Innovation in Biomedicine: Can Stem Cell Research Lead the Way to Affordability?
نویسنده
چکیده
May 2006 | Volume 3 | Issue 5 | e126 In November 2004, California voters approved a ten-year, US$3 billion stem cell research program to pursue cures for diabetes, Parkinson disease, spinal cord injuries, and other chronic conditions. Campaign organizers also claimed the state would receive royalties from new therapies, economic development in the form of jobs and taxes, and access to cheaper medicines [1]. Once the initiative passed, its proponents sought to scale back unrealistic voter expectations about rapid advances in the fi eld— recent revelations of scientifi c fraud involving a prominent stem cell scientist will undoubtedly have that effect. Yet the goal that stem cell therapies resulting from the initiative will be made affordable for state residents remains in place. Toward that end, some California legislators are focusing on how the newly created California Institute for Regenerative Medicine (CIRM) should handle intellectual property (IP) generated by its grants. In August 2005, at CIRM’s request, the state-funded California Council on Science and Technology (CCST) recommended that CIRM adopt with minor variations the federal Bayh–Dole system [2]. The 1980 Bayh–Dole Act gives research institutions the primary responsibility for maximizing the healthand economic-development benefi ts from government research funding. It encourages researchers or their institutions to patent inventions generated under government grants and transfer the technology to private fi rms. While the act gives the federal government the power to infl uence the affordability of the resulting technologies, it has never used this authority. The CCST report, embracing that stance, discouraged efforts to recoup revenue through high licensing fees and postponed a discussion of preferential pricing for state residents [3]. The report suggested such approaches would inevitably hinder the development of the public–private collaborations needed to bring new therapies to market. While regional governments frequently fund biomedical research in Europe, California is the fi rst state in the United States to embark on a large-scale program. The size of its commitment suggests that the state will be a major patron of stem cell research for years to come. This gives California a unique opportunity to create a climate that will not only be hospitable to innovation but also simultaneously deliver affordable medicine. The state government can do this by redefi ning how government, medical researchers, and the private sector interact. In doing so, it could serve as a model for reforming the US and global biomedical innovation systems. Change is necessary for two reasons. First, under the current system, new technologies, no matter how marginally effective, come to market at the highest prices. These advancing medical technologies are a major cause of rapidly rising health-care spending throughout the industrial world. Second, biomedical innovation in the US, long considered the global leader,
منابع مشابه
Comparative Analysis of Expression of Chemokoine Receptors CXCR4, CXCR6, CCR1 and CX3CR in Human Adipose-Drived Mesenchymal Stem Cell with Valproic Acid
Introduction: Chemokine receptors are found on the surface of stem cells. There have been 19 distinct chemokine receptors described in mammals. Chemokines are major players in migration and homing. Therefore, changes in their levels or function can help us to increase the migratory potential of these cells. Valproic acid differs in structure from other drugs in common use. The way in which Va...
متن کاملP-116: Absence of JMJD1A, A Testis- Specific Histone Demethylase, in Tissue Samples of TESE Negative Men
Background During mammalian spermatogenesis unique and dynamic epigenetic events occur leading to chromatin condensation. Through these events, histone demethylases such as JMJD1A play important roles in compaction of sperm chromatin, due to regulation of histone methylation dynamics and alteration of chromatin structure. As �histone methylation� is one of the best-characterized modifications i...
متن کاملPre-treatment with rapamycin protects hematopoiesis against radiation injury
Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...
متن کاملEstablishing a new animal model for muscle regeneration studies
Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system. Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...
متن کاملThe Validated Embryionic Stem Cell Test to Predict Embryotoxicityinvitro
Backgrounds: A straight-forward way to identify whether a drug or environmental chemical can be harmful to unborn baby is to evaluate its effect on laboratory animals. All invivo methods need large number of animal and are therefore time consuming and expensive. However, the thousands of chemicals in need of testing, to reduce the spending of live animals, an assortment of in vitro assays has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Medicine
دوره 3 شماره
صفحات -
تاریخ انتشار 2006